Preventing Beam Pollution: Defining an Empirical Protocol to
Improve Beam Search Lattice Traversal

TU /e supervisor: dr. W. Duivesteijn

Introduction to Local Pattern Mining

In contrast with building a one-size-fits-none global model for the entire dataset, Local Pattern Mining is a
data mining subfield that acknowledges that a dataset may encompass multiple groups that each behave in
their own way. The goal of Local Pattern Mining is to discover interesting subsets in a dataset. The subsets
must satisfy two conditions:

e they must be interpretable;
e they must display exceptional behavior.

By interpretable, we typically mean that we are only interested in subsets that can be defined as a conjunction
of a few conditions on columns of the dataset at hand. Hence, we do not want to find “this group of ten
datapoints is interesting”, but instead:

smoking = yes A age < 25 ~ (some exceptional behavior)

Such subsets are called subgroups. Returning only subgroups that can be defined in terms that the dataset
owner can understand, ensures that we find things that are actionable: we can build a policy on this sort of
knowledge.

Exceptional behavior can be defined in many many ways. A wild variety of Local Pattern Mining methods
exist, typically distinguished by what choice they make here. For instance:

Frequent Itemset Mining [I] : defines it in an unsupervised manner as “high frequency”;

Subgroup Discovery [4, 9], 3] : defines it in a supervised manner as “unusual distribution of a single
target columm”;

Ezxceptional Model Mining [5), [2] : defines it in a supervised manner as “unusual interaction between
several target columns”.

Still, within those definitions, many parameters can be chosen and altered to end up with a sprawling
cornucopia of interesting mining tasks and results.

Search Lattice

The subgroup search space can be represented as a lattice of candidate subgroups, where each level of the
search consists of specializations of subgroups from the layer above:

true

A=a1 A=62 B=b1 B=b2 C=C1

-
/’\'ﬁ:
“+ = 4

A=a;nB=b; A=a;nB=b, A=a,®B=b} ; -t

l T| 42 |.a3| 55
a2 | .33

A=aI/\B=b1/\C=C1

-

.54 1.0

minimum coverage
level reached

When the dataset consists of many attributes with many distinct values, the number of subgroups that can
be defined explodes, and the lattice above becomes ridiculously (intractably) wide. This often prohibits
exhaustive search.

A canonical way to traverse this search lattice is through Beam Search [2, Algorithm 1]: a top-down algorithm
where we start with the most general subgroup there is: no conditions, so the subgroup encompasses all
records in the dataset. We then generate all possible refinements (conjoining to the current condition list a
single condition on a single attribute) of this seed subgroup as candidates for the next level: their qualities
are determined, and the best w (to be set by the user) are kept as the beam for the next level. On the next
level each subgroup in the beam is refined into a new set of candidates, and this process repeats until the
maximum depth d (to be set by the user) is reached. Hence, Beam Search starts from the top, and makes
a level-wise downward traversal through the lattice until a certain maximum depth is reached; each level
beyond depth 1 is only partially traversed.

The Beam Pollution Problem

The core idea behind Beam Search is attractive: we essentially have a multi-pronged greedy strategy. Since
we cannot expand all the search nodes in the top level we must resort to heuristics, but if we were to go
pure greedy (expanding only the single most promising search node) we are very likely to miss interesting
subgroups. Beam Search is meant to provide the best of both worlds: by expanding the w (typically: 10 to
100) most promising search nodes, we are more likely to cover all interesting subgroups while keeping the
tractability under control.

A problem here is that this parameter w is fiendishly difficult to tune, and its correct setting is very sensitive
to the underlying structure of the dataset as a whole. Let’s illustrate the problem with a concrete dataset.
Let’s say that the dataset is about people, and that for the target concept we’re interested in both smokers
and people of retirement age are exceptionally-behaving subgroups; these factors amplify each other for even
better-scoring subgroups. On search depth d = 1, our beam may look something like this:

This already illustrates two problems. The top-two subgroups are strongly correlated: retirement age in the
Netherlands is around 67 years, so these subgroups are almost identical. This is inevitable in large datasets.
The numeric attributes pose another problem: how does one determine the right level of discretization? Too
finegrained means that our beam instantly pollutes, too coarse means that potentially interesting subgroups
go undetected. Notice how ranks 8-10 contain some wider groups that point at middle-aged and older people;
these signals are not as strong as the ones from the age, occupation, and smoker attributes, but they do

=
&
=)
=~

Subgroup

age > 67

occupation = retired
age > 72

age > 62

smoker = yes

age > 77

age > b7
owns_house = yes
has_children = yes
yearly_income = high

COXN ORI

—_

belong a little lower-ranked in the beam of a certain width.

On search depth d = 2, we find the following;:

=3
oY)
=]
~

Subgroup

SR A e

—_

The top-two subgroups are still almost identical, but this combination of factors is the strongest signal in the
dataset so it’s not necessarily bad that we find this. But diversity of the subgroups in the beam has decreased
quite a bit. Notice how the last four subgroups are basically all the same: if enough half-intervals of age
end up in the beam on search depth 1, these all become flattened into the same subgroup by recombination
with the occupation = retired condition on level 2, and if this subgroup is good enough to enter the beam,

it will do so with all its variants.

age > 67 AND smoker = yes

occupation = retired AND smoker = yes

age > 67 AND occupation = retired
age > 72 AND smoker = yes

age > 72 AND occupation = retired
age > 62 AND smoker = yes

age > 62 AND occupation = retired
age > 57 AND occupation = retired
age > 52 AND occupation = retired
age > 22 AND occupation = retired

On search depth d = 3, things break down irreparably:

Rank Subgroup

1. age > 67 AND smoker = yes AND income < $600K
2. occupation = retired AND smoker = yes AND income < $600K
3. age > 67 AND smoker = yes AND occupation # carpenter
4. age > 67 AND smoker = yes AND occupation # train driver
5. age > 67 AND smoker = yes AND occupation # tech entrepreneur
6. age > 67 AND smoker = yes AND occupation # quarterback
7. age > 67 AND smoker = yes AND income < $500K
8. occupation = retired AND smoker = yes AND income < $500K
9. age > 67 AND smoker = yes AND income < $450K
10.

occupation = retired AND smoker = yes AND income < $450K

Only variants of the first two subgroups on the previous level remain. Two problems appear. The variable
occupation is a high-cardinality categorical: many occupations exist, and if the pattern language allows for
constraints, then many near-copies of the same subgroup can be generated that will inevitably pollute the
beam. But even if we forbid such constraints, this does not prevent the other problem: at some point we
will have identified the strongest subgroups in the dataset, and on subsequent levels, the algorithm will try
to find ways to generate small tweaks to those subgroups in order to maximize quality. At some point, the
beam will inevitably become polluted.

What to Do?

It is hard to make a general statement about when a refinement of a subgroup is useful and when it is
spurious. This makes it almost impossible to make an individual decision on the subgroup level. But we
can try to tackle this problem, perhaps, by looking at the composition of the beam on a collective level: are
these indeed sufficiently different prongs of the greedy strategy we are trying to pursue here?

We made a first attempt in an as of yet unpublished paper. Of the 100 subgroups that ended up in the beam,
we determined the mutual Jaccard indices: of each pair, determine the overlap of their coverage (records
belonging to the subgroup). Lower is better: a value of zero means that these subgroups are disjoint; a value
of one means that these subgroups are identical. In the figure below, you find the heatmaps for the first four
search levels:

On depth 1, there is some overlap, but this is not weird: with 100 subgroups in the beam, and a dataset with
not that crazy many attributes, we will find some overlap there. On depth 2, almost the entire off-diagonal
figure turns very dark. This is ideal: many very disjoint subgroups in the beam. On depth 3, some clusters
begin to appear but this is still largely okay. On depth 4, we see all these blocks of white: our beam gets
polluted by clumps of identical subgroups. We probably have gone too far.

I firmly believe that this tells us something. I am not quite as convinced precisely what it tells us. On depth
4, have we gone too far? How can we turn such pictures into a hard decision? And how does this decision
depend on problem parameters such as:

e number of records;

e chosen search width;

e maximum search depth;

e total number of attributes;

e fraction of attributes that is numeric;

e chosen discretization strategy for numeric attributes [8];
e cardinality of the categorical attributes;

e correlation between the attributes;

e kind of target interaction that we aim for and the quality measure we employ to determine exception-
ality.

The ultimate goal of this project would be a hard protocol: can we make a decision when the beam search
is polluted in such a way that digging deeper is senseless (make a stopping criterion on the search depth)?
Failing that, can we come up with a better beam selection strategy?

Current Status

Many papers exist to perform Diverse Subgroup Set Selection: finding a good but diverse set of subgroups
as final result of a local pattern mining run. For a subgroup discovery setting, two papers exist [0l [7] that
connect the beam composition to optimality in ROC space, but ROC analysis only makes sense if a single
binary target attribute exists and we want something more generic.

Requirements

You need an analytic mind and a willingness to plug away at solutions. This is a seemingly simple problem
with no solution, but that means that many intelligent people have tried many things already and failed. If
we can come up with a well-motivated protocol, I expect this project to lead to a publication at a top-level
data mining or machine learning conference, or perhaps a journal.

References

[1] Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining Association Rules in Large
Databases. VLDB 1994: 487-499

[2] Wouter Duivesteijn, Ad Feelders, Arno J. Knobbe: Exceptional Model Mining - Supervised descriptive
local pattern mining with complex target concepts. Data Min. Knowl. Discov. 30(1): 47-98 (2016)

[3] Francisco Herrera, Cristébal J. Carmona, Pedro Gonzdlez, Marfa José del Jesus: An overview on subgroup
discovery: foundations and applications. Knowl. Inf. Syst. 29(3): 495-525 (2011)

[4] Willi Klosgen: Explora: A Multipattern and Multistrategy Discovery Assistant. Advances in Knowledge
Discovery and Data Mining 1996: 249-271

[5] Dennis Leman, Ad Feelders, Arno J. Knobbe: Exceptional Model Mining. ECML/PKDD (2) 2008: 1-16

[6] Michael Mampaey, Siegfried Nijssen, Ad Feelders, Arno J. Knobbe: Efficient Algorithms for Finding
Richer Subgroup Descriptions in Numeric and Nominal Data. ICDM 2012: 499-508

[7] Marvin Meeng, Wouter Duivesteijn, Arno J. Knobbe: ROCsearch - An ROC-guided Search Strategy for
Subgroup Discovery. SDM 2014: 704-712

[8] Marvin Meeng, Arno J. Knobbe: For real: a thorough look at numeric attributes in subgroup discovery.
Data Min. Knowl. Discov. 35(1): 158-212 (2021)

[9] Stefan Wrobel: An Algorithm for Multi-relational Discovery of Subgroups. PKDD 1997: 78-87

