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Deep neural networks (DNN) deployed in the real world are frequently exposed to non-stationary data
distributions and required to sequentially learn multiple tasks. This requires that DNNs acquire new
knowledge while retaining previously obtained knowledge and this is imperative in applications like
autonomous driving and robotics. However, continual learning in DNNs, in which networks are trained
in a sequence of tasks, results in catastrophic forgetting of previously learned information. Therefore,
to combat this, a variety of approaches have been proposed for convolutional neural networks (CNN)
[ASZ22, BZA22, SAZ22].

On the other hand, the recent breakthrough of vision transformers (VTs) and their compelling
performance in different vision tasks present them as an alternative architectural paradigm. Due to
their global receptive field, self-attention-based transformer architectures have a unique advantage over
CNNs in terms of robustness and generalizability [JKV+22]. However, VTs struggle in the low training
data regime [TCD+21]. Thus, various architectural modifications have been proposed to incorporate
convolutional biases and increase data efficiency in VTs [WXZ+22, WXC+21, dTL+21, YCW+21].

Most of the research has focused on developing effective training methodologies to combat catas-
trophic forgetting in CNN and VT. However, only a few works have investigated the effect of archi-
tectural choices on lifelong learning. Moreover, these studies only investigate the effect of CNN ar-
chitecture choices, such as batchnorm layer and network depth, on catastrophic forgetting [MCY+22,
PLH22]. However, works exploring the effect of architectural choices of VTs in continual learning per-
formance is almost non-existent. VTs architectures are results of different architectural design choices
including attention mechanism, positional embedding, token embedding, and class token. Therefore,
the objective of this study would be to conduct a comprehensive study on the impact of architectural
choices in VTs on various aspects of continual learning, including catastrophic forgetting, plasticity to
learn new tasks, and task-recency bias, etc.
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